A Novel Combination Forecasting Algorithm Based on Time Series

نویسندگان

  • Lihua Yang
  • Baolin Li
  • Xuetao Li
چکیده

To effectively predict cigarette sales and improve the competitiveness of tobacco business enterprises, the characteristics of actual cigarette sales were detailed analyzed. Due to the long-term growth trends, seasonal fluctuations and the nonlinearity of monthly sales, we established three single forecasting models, which are Exponential Smoothing (ES), Seasonal Decomposition (SD) and Radial Basis Function (RBF) neural network. After obtaining the predicted value of three single models, the combination forecasting model was proposed. The weights of the three single models were computed using Mean Absolute Error and the mean relative error respectively, the result shows that relative error is more effective. A dynamic weight combination forecasting method based on RBF is proposed and compared with fixed weight method. Finally, the prediction accuracy of different models was compared based on the criteria of MAPE and RMSE, and the effectiveness of the combination method was proved, the proposed model can take advantage of the strengths of the three single models, the results indicate that the combination forecasting model suitable for cigarette sales has higher prediction accuracy. In some cases, the prediction accuracy of the fixed weight combination model is better than the dynamic weight combination model. The results can provide a certain reference to cigarette sales forecasting.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combination of Transformed-means Clustering and Neural Networks for Short-Term Solar Radiation Forecasting

In order to provide an efficient conversion and utilization of solar power, solar radiation datashould be measured continuously and accurately over the long-term period. However, the measurement ofsolar radiation is not available to all countries in the world due to some technical and fiscal limitations. Hence,several studies were proposed in the literature to find mathematical and physical mod...

متن کامل

Time Variant Fuzzy Time Series Approach for Forecasting Using Particle Swarm Optimization

  Fuzzy time series have been developed during the last decade to improve the forecast accuracy. Many algorithms have been applied in this approach of forecasting such as high order time invariant fuzzy time series. In this paper, we present a hybrid algorithm to deal with the forecasting problem based on time variant fuzzy time series and particle swarm optimization algorithm, as a highly effi...

متن کامل

پیش بینی شاخص بازار بورس تهران با استفاده از مدل سری زمانی فازی مرتبه بالا و الگوریتم شبیه سازی تبرید

During the recent years extensive researchs have been done on fuzzy time series. Since length of intervals affect the forecasting results in these models, doing research in this area became an interesting topic for time series researchers, there are some studies on this issue but their results are not good enough. In this study, we propose a novel simulated annealing heuristic algorithm is use...

متن کامل

A NEW APPROACH BASED ON OPTIMIZATION OF RATIO FOR SEASONAL FUZZY TIME SERIES

In recent years, many studies have been done on forecasting fuzzy time series. First-order fuzzy time series forecasting methods with first-order lagged variables and high-order fuzzy time series forecasting methods with consecutive lagged variables constitute the considerable part of these studies. However, these methods are not effective in forecasting fuzzy time series which contain seasonal...

متن کامل

Forecasting Annual Power Generation Using a Harmony Search Algorithm-Based Joint Parameters Optimization Combination Model

Accurate power generation forecasting provides the basis of decision making for electric power industry development plans, energy conservation and environmental protection. Since the power generation time series are rarely purely linear or nonlinear, no single forecasting model can identify the true data trends exactly in all situations. To combine forecasts from different models can reduce the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015